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Methods

Background: The Einstein Telescope will be a key instrument for detecting GWs in the coming decades [Punturo et 
al. 2010, Maggiore et al. 2020, Branchesi et al. 2023, Abac et al. 2025]. However, analyzing the data and estimating 
source parameters will be challenging, especially given the large number of expected detections – of order  per year 
– which makes current methods based on stochastic sampling impractical [Couvares et al. 2021]
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In its triangular configuration and for short-lived sources, the Einstein Telescope will provide 
more precise distance measurements than sky localization.
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In Santoliquido et al. 2025, we use Dingo-IS to 
perform Neural Posterior Estimation (NPE) of high-
redshift events observable with the Einstein 
Telescope. NPE is a likelihood-free inference 
technique that leverages normalizing flows to 
approximate posterior distributions [Dax et al. 2023]:


Once trained, this approach enables fast and 
accurate inference—typically requiring only a few 
minutes per source. To correct for any residual bias, 
we employ importance sampling,





where  is the likelihood,  the prior and 
 is the neural approximation of the posterior. 

wi =
ℒ(d |θ)π(θ)

q(θ |d)
,

ℒ(d |θ) π(θ)
q(θ |d)

Posterior samples from Dingo-IS [Dax et al. 2021] 
and Bilby [Romero-Shaw et al. 2020] indicate that 
the two distributions are effectively identical. The 
corner plot shows also multimodalities that arise due 
to the geometry of a triangular co-located detector 
[Singh and Bulik 2021]. These modes are absent 
when using the Fisher information matrix 
approximation [GWFish+Priors, Dupletsa et al. 
2025].
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