Gravitational Wave Astrophysics Lecture 3

Filippo Santoliquido **GS** and **INFN**, L'Aquila, Italy

ICTP-SAIFR/IFT-UNESP, São Paulo, August 2024

In this lecture, you will learn

- Multimessenger astrophysics
- Host galaxies and how to model them
- GWs and cosmology

The Kilonova

- A Kilonova (KN) is an emission of electromagnetic radiation due to the radioactive decay of heavy elements that are ejected fairly isotropically during the merger.
- Profound impact on many research areas

Credits: <u>Ascenzi et al. 2020</u>

The Kilonova

- m_{ei} and v_{ei} **Solution Astrophysics**
- k (opacity) **Atomic Physics**
- \dot{e}_0 (radioactive heating rate) \Box Nuclear Physics

$$\binom{2/g}{0.01} = \binom{0.65}{0.01} \left(\frac{m_{\rm ej}}{0.01} \right)^{0.35} \left(\frac{\dot{e}_0}{5 \times 10^{16} \, {\rm erg \ s^{-1} \ g^{-1}}} \right)^{0.35}$$

Refs: Metzger 2019, Perego et al. 2021,

Kilonova VS GRB

- Light curves at varying inclination angles
- KN mostly outshined by Afterglow
- Line styles correspond to different NS masses
- Take-home message: boost observations of KNs with GWs

Credits: Loffredo et al. in preparation

Filter g

Detectors

~ few minutes

Low latency

EM facilities

Low latency: EM facilities

Credits: The LIGO-Virgo-KAGRA collaboration

Sky localisation

•
$$\frac{\Delta L}{L} \propto h_{\text{measured}}(t) = F_{+}(\theta, \phi)h_{+}(t) + F_{\times}(\theta, \phi)h_{+}(t)$$

- GW detector is an **all-sky monitor** with varying \bullet sensitivity
- No directional sensitivity

Credits: <u>Hayama et al. 2012</u>

Triangulation

- Sky position of GW sources is evaluated with triangulation
- Difference in the arrival time at the detectors
- $\Delta \Omega \propto SNR^{-2}$

Credits: The LVK collaboration

GW170817

Credits: The LVK collaboration

GW170817 host galaxy

- NGC4993, S0 galaxy
- $M_* \sim 10^{10.65} \,\mathrm{M_{\odot}}$
- SFR ~ $0.01 M_{\odot} yr^{-1}$
- z = 0.009783
- Small natal kick velocity, no GC or YSC

GW170817 NGC 4993

HST/WFC3 F110W+F160W

Refs: Levan et al. 2017, Blanchard et al. 2017

How to model host galaxies

- Challenge: interfacing Physics at scales spanning orders of magnitude
 - Evolution of galaxies across history of the Universe and formation of compact object mergers at binary system level
- Solution: galaxy catalogs from cosmological simulations

Refs: Mapelli et al. 2017, Artale et al. 2019, Toffano et al. 2019, Artale et al. 2020, Chu et al. 2022, Perna et al. 2022

Model to rank host galaxies

- $p(\text{galaxy}) \propto p(M, \text{SFR}) p_{\text{loc}}(\text{galaxy})$
- $p(M, \text{SFR}) \propto N_{GW}/N_{\text{galaxies}}$
- N_{GW} total number of mergers and $N_{\rm galaxies}$ total number of galaxies at (M, SFR)

Refs: Artale et al. 2020

Model to rank host galaxies

- $p(galaxy) \propto p(M, SFR) \frac{p_{loc}(galaxy)}{p_{loc}(galaxy)}$
- $p(M, SFR) \propto N_{GW}/N_{galaxies}$
- N_{GW} total number of mergers and $N_{galaxies}$ total number of galaxies at (*M*, SFR)

Refs: Artale et al. 2020

Credits: The LVK collaboration

Model to rank host galaxies

- $p(\text{galaxy}) \propto p(M, \text{SFR}) p_{\text{loc}}(\text{galaxy})$
- $p(M, SFR) \propto N_{GW}/N_{galaxies}$
- N_{GW} total number of mergers and N_{galaxies} total number of galaxies at (M, SFR)

Do you see a strong correlation in p(M, SFR)**?**

Refs: Artale et al. 2020

Uncertainties

- alternative approach: galaxyRate
- shaping host galaxy properties:
 - Stellar mass
 - Star formation rate
 - Metallicity

We explore the parameter space to look for the key physical processes

Refs: <u>Santoliquido et al. 2022</u>

Galaxy Stellar Mass Function

Refs: Chruslinska & Nelemans 2019, Ilbert et al. 2013, Santoliquido et al. 2022

SFR main sequence

•
$$\langle \log_{10} \text{SFR} \rangle_{MS} = 0.83 \log_{10} \left(\frac{M_*}{M_0} \right) - 0.83 + 1.74 \left(\frac{1+z}{1+z_0} \right)$$

Refs: Boco et al. 2021, Boogaard et al. 2018

SFR main sequence

Refs: Boco et al. 2021, Boogaard et al. 2018

Refs: Speagle et al. 2014, Boogaard et al. 2018, Madau and Fragos 2017, Schaye et al 2015

SFR(z)

23

Do you remember metallicity impact on compact object formation?

Merger efficiency

Merger efficiency

Impact of metallicity

number and metallicity of stars formed at different times

evolution of massive stars and binaries

population of GW sources

Credits: Chruślinska 2022

Metallicity distribution

Refs: Mannucci et al. 2011, Chruslinska & Nelemans 2019, Curti et al. 2020,

Metallicity distribution

Refs: Mannucci et al. 2011, Chruslinska & Nelemans 2019, Curti et al. 2020,

SFRD(z, Z)

galaxyRate

Formation galaxies

Merging compact objects

Host galaxies

Population of star-forming galaxies from observational scaling relations

Host galaxies

Host galaxies

Refs: <u>Schaye et al. 2015</u>, <u>McAlpine et al. 2016</u>

Universe at *z_{merg}*

Percentage of mergers hosted in passive galaxies **increases** at decreasing redshift

galaxyRate: passive galaxies

galaxyRate: passive galaxies

Can host galaxies be useful in other ways?

• GW are standard sirens

•
$$h_{+} = \frac{2(1+z)\mathcal{M}}{d_{L}}(\pi(1+z)\mathcal{M}f)^{2}$$

• $h_{\times} = -\frac{4(1+z)\mathcal{M}}{d_{L}}(\pi(1+z)\mathcal{M}f)^{2}$

• Chirp mass
$$\mathcal{M} = \frac{(m_1 m_2)^{3/5}}{(m_1 + m_2)^{1/5}}$$

GW and cosmology

$2^{3}(1 + \cos^{2} i) \cos 2\phi_{N}(t)$

$(f)^{2/3}\cos\iota)\sin 2\phi_N(t)$

Refs: Mastrogiovanni et al. 2021, Gray et al. 2022 42

- $v_{\rm H} = H_0 d_L$
- Recession velocity from NGC $4993:v_H = 3017 \pm 166 \text{ km s}^{-1}$
- $d_L = 43.8^{+2.9}_{-6.9}$ Mpc
- $H_0 = 70.0^{+12.0}_{-8.0} \text{ km s}^{-1} \text{ Mpc}^{-1}$ 68% C.I.
- SHoES: Cepheids and type Ia SN

GW and cosmology

Refs: <u>Abbott et al. 2017</u>

• Bright sirens: EM counterpart breaks the inclination angle/ luminosity distance degeneracy inclination angle from KN and afterglow models

GW and cosmology

Credits: Hotokezaka et al. 2019

44

- **Dark sirens:** cross-correlation with potential host galaxies within localisation volumes
- GW event well localised (only one host galaxy), the statistical method (dark sirens) reduces to the counterpart method (bright sirens)

GW and cosmology

Credits: Fishbach et al. 2019

What you did (not) learn today

- Multimessenger astrophysics and host galaxies
- Modelling the host galaxies and cosmology

Tomorrow

- Population-synthesis simulation
- Population III stars and black holes
- Einstein Telescope and the future of GW astrophysics

Further reading:

- Escobar
- References:
 - Chemical evolution of the Universe: Chruślinska 2022
 - Borghi et al. 2024
- See you this afternoon!

• This is based on lecture materials of Marica Branchesi, Jan Harms, Tito Dal Canton, Michela Mapelli, Eleonora Loffredo, Giuliano Iorio and Gaston

Dark sirens: <u>Dal Pozzo 2012</u>, <u>Chen and Holz 2016</u>, <u>Chen et al. 2018</u>