Gravitational Wave Astrophysics Lecture 2

Filippo Santoliquido **GS** and **INFN**, L'Aquila, Italy

ICTP-SAIFR/IFT-UNESP, São Paulo, August 2024

In this lecture, you'll learn

- Population analysis of GW events
- Astrophysics of compact objects:
 - Isolated formation channel
 - Dynamical formation channel

Population studies

Hierarchical Bayesian Analysis

$p(\theta \mid d) \propto \mathscr{L}(d \mid \theta) p(\theta)$ $p(\Lambda \mid \{d\}) \propto \mathscr{L}(\{d\} \mid \Lambda) p(\Lambda) \qquad \{d\} = \{d_1, d_2, d_3, \dots\}$

 $\theta = \{m_1, m_2, d_L, \dots\}$

$p(\Lambda | \{d\}) \propto \mathscr{L}(\{d\} | \Lambda)p(\Lambda)$

Credits: Mandel et al. 2019, Abbott et al. 2020, Vitale et al. 2022 6

$p(\Lambda | \{d\}) \propto \mathscr{L}(\{d\} | \Lambda)p(\Lambda)$

Credits: Mandel et al. 2019, Abbott et al. 2020, Vitale et al. 2022 7

$p(\Lambda | \{d\}) \propto \mathscr{L}(\{d\} | \Lambda)p(\Lambda)$

Credits: Mandel et al. 2019, Abbott et al. 2020, Vitale et al. 2022 8

$p(\Lambda | \{d\}) \propto \mathscr{L}(\{d\} | \Lambda)p(\Lambda)$

Credits: Abbott et al. 2020

GW190408_181802 GW190412 GW190413_052954 GW190413_134308 GW190421_213856 GW190424_180648 GW190425 GW190426_152155 GW190503_185404 GW190512_180714 GW190513_205428 GW190514_065416 GW190517_055101 GW190519_153544 GW190521 GW190521_074359 GW190527_092055 GW190602_175927 GW190620_030421 GW190630_185205 GW190701_203306 GW190706_222641 GW190707_093326 GW190708_232457 GW190719_215514 GW190720_000836 GW190727_060333 \wedge GW190728_064510 GW190731_140936 GW190803_022701 GW190814 GW190828_063405 GW190828_065509 GW190909_114149 GW190910_112807 GW190915_235702 GW190924_021846 GW190929_012149 GW190930_133541

 \wedge

 \leftarrow

 \leftarrow

0

 m_1/M_{\odot}

 m_2/M_{\odot}

q

 $\theta_i \sim p(\theta | d_i)$

D

 $\chi_{\rm eff}$

-		
-		
		>
_		
		-
_		
/		
-		
_		
-		
-		
-		
	\frown	
		>
/		
_		
	_	
_		
-		
-		
-		
_		
	/	
-		
_		
>	-	
	_	
	-	
	_	
	_	
	-	
	-	
	_	
	-	
	-	
	_	
	2	
	3 (5
		5
	3 (L/Gpc	5

10

$p(\Lambda \mid \{d\}) \propto \mathcal{L}(\{d\} \mid \Lambda) p(\Lambda)$

Why a power law?

 $\pi(m_1|lpha,m_{\min})$

Population models

$$(m_{1}, m_{\max}) \propto \begin{cases} m_{1}^{-\alpha} & m_{\min} < m_{1} < m_{\max} \\ 0 & \text{otherwise,} \end{cases}$$

Credits: Abbott et al. 2021

$p(\Lambda \mid \{d\}) \propto \mathcal{L}(\{d\} \mid \Lambda) p(\Lambda)$

Credits: Abbott et al. 2021

$p(\Lambda | \{d\}) \propto \mathscr{L}(\{d\} | \Lambda)p(\Lambda)$

Selection effects: fraction of merger that are detectable for a population with parameters Λ We will define it in lecture #4

Masses

$p(\Lambda | \{d\}) \propto \mathscr{L}(\{d\} | \Lambda)p(\Lambda)$

The LIGO-Virgo-KAGRA collaboration 2021

•
$$\chi_{\text{eff}} = (\mathbf{S}_1/m_1 + \mathbf{S}_2/m_2) \cdot \hat{\mathbf{L}}/M = \frac{\chi_1 \cos \theta_1 + 1}{1 + 1}$$

•
$$\chi_p = \max\left[\chi_1 \sin \theta_1, \left(\frac{3+4q}{4+3q}\right) q\chi_2 \sin \theta_1\right]$$

- $\chi_{\rm eff}$ and χ_p are approximately conserved quantities
- Dimension-less spin component $\chi_i = \mathbf{S}_i / m_i$ where S_i is the individual spin
- $\hat{\mathbf{L}}$ is orbital angular momentum

Spins

Refs: <u>Hannam et al. 2014</u>, <u>Schmidt et al. 2015</u>

Spins

small but non-vanishing spins

The LIGO-Virgo-KAGRA collaboration 2021

Rates

 $\mathscr{R} \propto (1+z)^{\kappa}$

Merger rate density is increasing with redshift

Refs: The LIGO-Virgo-KAGRA collaboration 2021

Today's hands-on section!

Rates

 $\mathscr{R} \propto (1+z)^{\kappa}$

Refs: The LIGO-Virgo-KAGRA collaboration 2021

Astrophysics of compact objects: can our models predict observations?

- Final stage of massive star evolution
- NS mass $\in [\sim 1, \sim 3]$ M_{\odot}
 - supported by electron degeneracy
 - which no source pressure can counteract gravity
- BH mass $\gtrsim 3 M_{\odot}$

NS vs BH

• Lower limit: Chandrasekhar mass: maximum mass for a star to be

• Upper limit: Tolman-Oppenheimer-Volkoff limit: max mass above

Refs: Chandrasekhar 1931, Oppenheimer and Volkoff 1939 19

• $\frac{\mathrm{d}E_{\mathrm{orb}}}{\mathrm{d}t} = -\frac{Gm_1m_2}{2a^2}\frac{\mathrm{d}a}{\mathrm{d}t}, \frac{\mathrm{d}E_{\mathrm{orb}}}{\mathrm{d}t} \sim \frac{32}{5}\frac{G^4}{c^5}\frac{m_1m_2(m_1+m_2)}{a^3}$

GW decay

Refs: Peters 1964, Mapelli 2018, Iorio et al. 2023 20

GW decay

$$\int \frac{32 \ G^4 \ m_1 m_2 (m_1 + m_2)}{5 \ c^5 \ a^3}$$

$$\frac{2}{a^{3}(1-e^{2})^{7/2}} \left(1 + \frac{73}{24}e^{2} + \frac{37}{96}e^{4} \right)$$

$$\frac{3}{a^{3}(1-e^{2})^{7/2}} \left(1 + \frac{121}{304}e^{2} \right)$$

Refs: Peters 1964, Mapelli 2018, Iorio et al. 2023 21

22

Credits: Martyna Chruślinska

Refs: Costa et al. 2023

- Example: $m_1 = m_2 = 1 \text{ M}_{\odot}, a = 1 \text{ AU} \square t_{GW} \sim 2 \times 10^{17} \text{ yr}$
- GW decay is significant only in very tight binaries

GW decay

we need astrophysical processes to make the two compact objects merge

Refs: Peters 1964, Mapelli 2018, Iorio et al. 2023 23

Single stellar evolution

- **Metallicity:** fraction of every element heavier than hydrogen (X) and helium (Y) $\Box Z = 1 - X - Y$
- Sun: $Z_{\odot} \sim 0.015 0.02$ metal rich star
- Stellar winds: photons in stellar atmosphere couples with ions **transfer** of linear momentum that can unbind ions

Credit: Michela Mapelli

Single stellar evolution

- Mass loss due to stellar winds depends on metallicity $\Box \dot{M} \propto Z^{\alpha}$ with $\alpha \sim 0.5 - 0.9$
- Massive and metal rich star can lose > 50%of their mass due to stellar winds

Credits: Michela Mapelli

Refs: Bressan et al. 2012, Spera et al. 2015, Vink et al. 2016, Mapelli 2018

- core collapses (CC)
- White Dwarf
- and neutron degeneracy pressure balance gravity **Neutron Star**
- CC **Black Hole**

Death of a star

• When nuclear burning is over, the star is out of hydrostatic equilibrium and the

• $M_{\rm ZAMS} \lesssim 8 {\rm ~M}_{\odot}$ \square CC stops when electron degeneracy pressure balance gravity. Thermal pulses remove all the envelope, revealing the bare CO core

• $M_{ZAMS} \in [\sim 8, \sim 20] M_{\odot} \square$ CC stops when core reaches nuclear density

Refs: Percival 2016, Couch et al. 2017

Single stellar evolution

Refs: Spera et al. 2015, Spera and Mapelli 2017, Mapelli 2018, Spera et al. 2022

Stellar winds set the upper limit of BH mass

Binary systems

Isolated formation channel

- Two stars form from the same gas cloud and evolve into two merging BHs
- Binary evolution driven by two main processes: \bullet
 - Mass transfer
 - Common Envelope

Credits: Michela Mapelli

• Roche lobe: $r_{\rm RL} = a \frac{0.49q^{2/3}}{0.6q^{2/3} + \ln(1+q^{1/3})}$

- can be transferred to the other object via L1

Credits: Michela Mapelli

Mass transfer

Common Envelope

1000 – 10'000 Rsun

This is the most important question. i.e., does the binary survive the CE phase?

Credits: Michela Mapelli

See <u>here</u> a short movie describing the CE phase

Modelling the common envelope

Hydrodynamical simulations

Credits: Ohlmann et al. 2016

$\alpha\lambda$ -formalism

•
$$E_{\text{bind},ini} = -\frac{G}{\lambda} \left(\frac{M_1 M_{1,\text{env}}}{r_1} + \frac{M_2 M_{2,\text{env}}}{r_2} \right)$$

• $E_{\text{orb},ini} = \frac{1}{2} \frac{G M_{c,1} M_{c,2}}{a_{ini}}$

• $E_{\text{bind},ini} = \Delta E_{\text{orb}} = \alpha (E_{\text{orb},fin} - E_{\text{orb},ini})$

Refs: Webbink 1984, Hurley et al. 2002

Can we explain all GW observations with only the isolated formation channel ?

Pair-instability Super Nova

- Very massive stars ($M_{\rm He}\gtrsim 64~{
 m M}_{\odot}$)
- Central temperature $T > 7 \times 10^8$ K
- Efficient production of gamma ray radiation in the core
- Gamma-ray photons scattering by atomic nucleus produce electron-positron pairs
- Missing radiation presure produces dramatic instability and collapse, leaving no remnants

Refs: Spera and Mapelli 2017

Credits: LIGO-Virgo-KAGRA collaboration

Pair-instability Super Nova

Credits: LIGO-Virgo-KAGRA collaboration

Dynamical formation channel

- Compact objects form and evolve with dynamical processes
- Dynamical processes have effect only with $\rho > 10^3$ stars pc⁻³ (i.e. Globular Clusters, **Nuclear Star Cluster, Young Star Clusters**)
- Star clusters are also an active environment of formation of massive stars

Refs: Lada and Lada 2003, Portegies Zwart 2010

Dynamical formation channel: processes

Hardening: star gains kinetic energy from the binary system 🕞 binary system shrinks

Credits: Michela Mapelli

the nks

Credits: Michela Mapelli

Exchange: making single BH part of a binary systems reger of massive BH with misaligned spins

Refs: Ziosi 2014, Mapelli 2018

Dynamical formation channel: processes

Hierarchical mergers: Merger remnant can become part of a binary by exchange BH can grow in mass because of repeated mergers

Refs: Ziosi 2014, Mapelli 2018

The merger product acquires a new companion through exchange

Credits: Michela Mapelli

Runaway collisions

- Mass segregation brings massive stars into the center
- Massive star collide, merge, and form super-massive stars capable of merging in the pair-instability mass gap BH

Refs: Mapelli 2018, Di Carlo et al. 2021

Credits: Michela Mapelli

Is there a predominant formation channel?

Signatures

Refs: Bouffanais et al. 2021

41

$\mathscr{L}(\{d\} \mid \Lambda) \propto \prod_{i=1}^{N_{obs}} \frac{\int \mathscr{L}(d_i \mid \theta) \pi(\theta \mid \Lambda)}{\xi(\Lambda)}$

 $\pi(\theta \mid \Lambda) = f p(\theta \mid \text{iso}, \sigma_z) + (1 - f)p(\theta \mid \text{dyn}, \sigma_z)$

Refs: Bouffanais et al. 2021, Zevin et al. 2021

- cosmoRate
- $d_{\rm L}$ (z, assuming a cosmology) is a waveform parameter
- A given population model must include a redshift distribution
- evaluate the merger rate density given a population of compact object mergers

Refs: Santoliquido et al. 2021

Today's hands on

What you did (not) learn today

- Observed population properties
- Astrophysical processes driving the isolated and dynamical formation channels

Tomorrow

- Multimessenger Astrophysics
- Properties of host galaxies of compact object mergers

Further reading:

- Tito Dal Canton, Michela Mapelli, Giuliano Iorio, Gaston Escobar, and Eleonora Loffredo
- References:
 - Dal Pozzo 2022,
 - dynamics), Costa et al. 2023 (and references therein)
- See you this afternoon!

This lecture is based on lecture materials from Marica Branchesi, Jan Harms,

Non-parametric models: Mandel et al. 2017, Li et al. 2021, Rinaldi and

Astrophysics of compact objects: <u>Mapelli 2018</u>, <u>Spera et al. 2022</u> (with